3.962 \(\int \frac{x}{(c+a^2 c x^2)^{3/2} \sqrt{\tan ^{-1}(a x)}} \, dx\)

Optimal. Leaf size=60 \[ \frac{\sqrt{2 \pi } \sqrt{a^2 x^2+1} S\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{a^2 c \sqrt{a^2 c x^2+c}} \]

[Out]

(Sqrt[2*Pi]*Sqrt[1 + a^2*x^2]*FresnelS[Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])/(a^2*c*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.16481, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {4971, 4970, 3305, 3351} \[ \frac{\sqrt{2 \pi } \sqrt{a^2 x^2+1} S\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{a^2 c \sqrt{a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Int[x/((c + a^2*c*x^2)^(3/2)*Sqrt[ArcTan[a*x]]),x]

[Out]

(Sqrt[2*Pi]*Sqrt[1 + a^2*x^2]*FresnelS[Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])/(a^2*c*Sqrt[c + a^2*c*x^2])

Rule 4971

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[(d^(q +
1/2)*Sqrt[1 + c^2*x^2])/Sqrt[d + e*x^2], Int[x^m*(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b,
 c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] &&  !(IntegerQ[q] || GtQ[d, 0])

Rule 4970

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[((a + b*x)^p*Sin[x]^m)/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{x}{\left (c+a^2 c x^2\right )^{3/2} \sqrt{\tan ^{-1}(a x)}} \, dx &=\frac{\sqrt{1+a^2 x^2} \int \frac{x}{\left (1+a^2 x^2\right )^{3/2} \sqrt{\tan ^{-1}(a x)}} \, dx}{c \sqrt{c+a^2 c x^2}}\\ &=\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \frac{\sin (x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{a^2 c \sqrt{c+a^2 c x^2}}\\ &=\frac{\left (2 \sqrt{1+a^2 x^2}\right ) \operatorname{Subst}\left (\int \sin \left (x^2\right ) \, dx,x,\sqrt{\tan ^{-1}(a x)}\right )}{a^2 c \sqrt{c+a^2 c x^2}}\\ &=\frac{\sqrt{2 \pi } \sqrt{1+a^2 x^2} S\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{a^2 c \sqrt{c+a^2 c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.134121, size = 97, normalized size = 1.62 \[ -\frac{\sqrt{a^2 x^2+1} \left (\sqrt{-i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},-i \tan ^{-1}(a x)\right )+\sqrt{i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},i \tan ^{-1}(a x)\right )\right )}{2 a^2 c \sqrt{c \left (a^2 x^2+1\right )} \sqrt{\tan ^{-1}(a x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/((c + a^2*c*x^2)^(3/2)*Sqrt[ArcTan[a*x]]),x]

[Out]

-(Sqrt[1 + a^2*x^2]*(Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-I)*ArcTan[a*x]] + Sqrt[I*ArcTan[a*x]]*Gamma[1/2, I*Ar
cTan[a*x]]))/(2*a^2*c*Sqrt[c*(1 + a^2*x^2)]*Sqrt[ArcTan[a*x]])

________________________________________________________________________________________

Maple [F]  time = 0.859, size = 0, normalized size = 0. \begin{align*} \int{x \left ({a}^{2}c{x}^{2}+c \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{\arctan \left ( ax \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(1/2),x)

[Out]

int(x/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac{3}{2}} \sqrt{\operatorname{atan}{\left (a x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a**2*c*x**2+c)**(3/2)/atan(a*x)**(1/2),x)

[Out]

Integral(x/((c*(a**2*x**2 + 1))**(3/2)*sqrt(atan(a*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{{\left (a^{2} c x^{2} + c\right )}^{\frac{3}{2}} \sqrt{\arctan \left (a x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(x/((a^2*c*x^2 + c)^(3/2)*sqrt(arctan(a*x))), x)